מהפיכת ה-AI: מה ארגונים חייבים לדעת?

מהפיכת ה-AI כבשה בסערה את הדיונים בחדרי ההנהלה כמעט בכל ארגון ובכל ורטיקל עסקי. קשה למצוא חברה שלא דנה בהשלכות ובהזדמנויות שטכנולוגיות מבוססות AI/GenAI מייצרות עבורה, כשמה שמדהים במיוחד הוא קצב השינוי. אין כמעט יום שחולף שבו לא קורה משהו חדש בתחום, עם כלים חדשים ומדהימים שנדמה שלוקחים צעד קדימה את מה שניתן לעשות איתם בהיבט המקצועי, האישי ובכלל.

כשנשאלת השאלה: היכן ארגונים וחברות יכולים להפיק ערך מהטכנולוגיות הללו, וכיצד הן יכולות לתרום להצעת הערך שהן מציעות לעצמן וללקוחות, חשוב להתייחס בין היתר לנקודות הבאות:

 

הגדרה ברורה של המטרות העסקיות (Clear Business Objectives): כפי שאנחנו אומרים כל הזמן ללקוחות שלנו: הטכנולוגיה היא תמיד האמצעי ולא המטרה עצמה. כל ארגון חייב להגדיר לעצמו את המטרות העסקיות שהוא מנסה להשיג (במסגרת האסטרטגיה הכללית), ועל בסיס מטרות אלו לבחון אילו אמצעים (טכנולוגיים ואחרים) יכולים לשרת ולקדם אותה לקראת השגת מטרות אלו. במקרה של טכנולוגיות GenAI/AI  מדובר באותה התפיסה בדיוק: ארגונים צריכים להגדיר לעצמם מטרות עסקיות ברורות ומוגדרות היטב, ורק אז לבחון כיצד AI יכול לסייע בהשגת המטרות.

דאטה איכותית, מטויבת ונגישה (Data Quality and Accessibility): חשוב לזכור שטכנולוגיות מבוססת AI חייבות להסתמך על דאטה איכותית, מטויבת ונגישה. לכן ארגונים חייבים לוודא שהדאטה שלהם מדויקת, מגוונת ורלוונטית מספיק במטרה לאפשר תשתית אופטימלית לתרגול ולימוד אלגוריתם ה-AI. מדובר בשלב בסיסי וקריטי לכל ארגון שרוצה לבנות יכולות, כלים וערך אמיתי. יותר מזה, החשיבות של איכות ונגישות הדאטה רלוונטית גם לצורכי ניהול, מעקב ובקרת הדאטה, הן בהיבט הפנים ארגוני, ולא פחות חשוב עבור דרישות רגולטוריות, סוגיה שנתייחס אליה בסעיפים הבאים.

דרישות רגולטוריות, אתיות וציות (Ethical and Regulatory Compliance): לצד ההזדמנויות הרבות ש-AI מייצרת, עלו בשנים האחרונות גם חששות רבים לגבי השפעתה על נושא הפרטיות ואבטחת המידע. בנוסף, יכולות הטכנולוגיה מאפשרות לייצר דברים שלא היו קיימים לפני: דיפ פייק תוך שימוש בקולות ופניהם של בני אדם, הפקת סרטוני ווידאו ותמונות שנראות אוטנטיות אך הן אינם כאלו ועד התחזות ברמת דיוק חסרת תקדים. כלים כמו ChatGPT ואחרים מבוססים על מידע עשיר כדי לספק את התוצרים הללו, וכשלא קיימת שקיפות לגבי האופן הספציפי שבו המידע מנוצל ולאן הוא יכול לזלוג, הדבר רק מגביר את החששות הגוברים.

לכן, אין זה מפתיע שאחד מהגורמים המשמעותיים ביותר שכל ארגון חייב להתייחס אליו בהיבט של שימוש ב-AI הוא: דרישות והנחיות רגולטוריות, ולצידן גם הפעלת שיקול דעת וקודים אתיים וערכיים בסיסיים, במיוחד במקומות שבהם הרגולציה עדיין לא הגדירה במדויק מה נדרש לבצע (מעבר לגבולות ה-GDPR). ארגונים חייבים להתייחס ל: שקיפות השימוש במידע, הוגנות ואחריות,  אבטחת מידע.

יישומים ממוקדי לקוח (Human-Centric Design): עובדים, לקוחות, שותפים עסקיים ועוד, ארגונים נדרשים ליישם את הטכנולוגיות בצורה נגישה, פשוטה, ברורה ושקופה כדי לאפשר לקהי היעד להשתמש בהן בצורה האופטימלית ביותר, כך שהטכנולוגיות יעצימו בסופו של דבר את היכולות האנושיות (במקום להחליף או ליתר אותם). לצורך כך ישנה חשיבות רבה באימון מספק של צוותים פנים ארגוניים על הטכנולוגיה, וקבלת פידבק שוטף מצד לקוחות קצה במטרה לזהות את האזורים הדורשים חידודים, הבהרות והנגשה משופרת של הטכנולוגיה עבורם.

גמישות והתרחבות (Scalability and Flexibility): כשארגונים ניגשים ליישם טכנולוגיות AI, חשובה ההסתכלות ארוכת הטווח, בהיבט של התרחבות, התגברות ושכלול הטכנולוגיה לאורך הדרך. יותר מכך, ארגונים חייבים לקחת בחשבון שינויים והתאמה דינאמית גם לצרכים עסקיים הולכים וגדלים לאורך השנים, צרכים שהטכנולוגיה תהיה חייבת להכיל ולשרת. לכן, ארגונים נדרשים ליישם ארכיטקטורות גמישות אך יציבות, מחשוב ענן ומתודולוגיות פיתוח אג'יליות שיאפשרו את התמיכה הזו לצד טכנולוגיות מתפתחות (וחדשות) וכמובן תנאי שוק שמשתנים בהגדרה.

ניהול סיכונים (Risk Management and Security): בניית אסטרטגיית ניהול סיכונים שתואמת את היכולות החדשות ש-AI מציעה ומאפשרת היא קריטית עבור כל ארגון, במטרה להיערך ולהתמודד עם סיכונים ואיומים המתקשרים לטכנולוגיה. ארגונים נדרשים לאמץ וליישם כלים אבטחתיים במטרה להגן על המידע, ולמנוע זליגתו וניצולו למטרות שאינן עולות בקנה אחד עם תחום הפעילות, האחריות והמטרות העסקיות של הארגון.

לימוד מתמיד, העמקה, ניסוי וטעיה (Continuous Learning and Improvement): כמו בכל טכנולוגיה, גם כשמדובר ב-AI, ארגונים שבאמת מעוניינים להיות בחוד החנית הטכנולוגית ולמקסם את הערך העסקי שניתן להפיק על בסיס הטכנולוגיה, חייבים לאמץ גישה של לימוד שאינו מסתיים לעולם. כפי שהטכנולוגיה משתנה, מתרחבת ומשתדרגת בכל יום שחולף, כך ארגונים חייבים לבנות יכולות לימוד, ניסוי והפנה של הטכנולוגיה, בראיה ההוליסטית והגמישה ביותר שניתן. חשוב לזכור ש-AI אינה נחלתה של מחלקת/אגף מערכות המידע, אלא כלי שיכול לייצר ערך ברחבי הארגון, מרמת העובד הבודד דרך צוותים ומחלקות ועד רמת הארגון כולו.

לסיכום: אנו נמצאים בעידן ייחודי ויוצא דופן, המתאפיין בשינוי דרמטי ביכולות ובעיקר בהזדמנויות שטכנולוגיות יכולות לייצר עבורנו בני האדם. כמו כל טכנולוגיה חדשה, לצד ההזדמנויות ישנם סיכונים ואיומים וחשוב שכל ארגון יתייחס לשניהם בבואו לשלב טכנולוגיה חדשה בתוכו. כדי לשמור על רמת עדכנות ורלוונטיות, חשוב שארגונים יבנו קשרים עם ונדורים טכנולוגיים, גורמים מקצועיים, חברות סטארטאפ וכל גורם שפועל ביום יום סביב ועם טכנולוגיות AI כדי להיות מיושרים עם הקו האחרון של הקדמה הטכנולוגית.

אז, אם גם אתם שומעים מכל עבר שה-AI וה-GenAI הם המפתח לחדשנות והצלחה עסקית, אך תוהים כיצד הטכנולוגיות הללו יכולות להתאים ולתרום בפועל לארגון שלכם? רוצים לדעת היכן להתחיל?
האם להטמיע את ה-AI בתהליכים פנימיים או במוצרים ושירותים חיצוניים?

ארגונים רבים מתחילים בניסויים עם טכנולוגיות AI, אך ללא אסטרטגיה ברורה ומקיפה, הפוטנציאל המלא יתקשה להתממש.

אנו בשטראוס זיהינו את הפער הזה, שקיים בארגונים רבים ומגוונים. לכן ריכזנו תהליך מובנה שיעזור לכם לנווט במים הלא נודעים הללו. אנו מציעים לכם צוות מומחים מקצועי, ותיק ומנוסה המשלב ניסיון מעשי בארכיטקטורה ו-GenAI עם הבנה עסקית רחבה, כדי להבטיח שהארגון שלכם מוכן וממוקד לשינויים הצפויים.

יחד אתכם, נגדיר חזון עסקי ברור, נזקק את הערך העסקי שתרצו להשיג, נגדיר וננהל את סיכונים בצורה מיטבית ונוביל את תהליך היישום הטכנולוגי בצורה יעילה ומסודרת.

מעוניינים לקחת את הארגון שלכם לשלב הבא? השאירו פרטים וניצור עמכם קשר בהקדם. נוביל אתכם בבטחה אל תוך מהפכת ה- AI.

 

עוד כתבות עבורך

רופא מתמחה, רופא כללי , וקידמה אקספוננציאלית 🤖

בשבת לפנות בוקר נערך בטקסס קרב אגרוף בין מייק טייסון (גיבור מוערץ) לבין ג'ייק פול אקס-יוטיובר שהוסב למתאגרף. התוצאה צפויה לצערי – 30 שנות הפרש הן רמז עבה… אבל, הקרב הזה הזכיר לי שרציתי לכתוב על "דו-קרב" אחר בעל תוצאות הרבה פחות צפויות: מודלי שפה גנריים מול מודלי שפה מתמחים.

🎯 ממון רב מושקע באימון ו/או fine-tuning של מודלי שפה

בתקווה ליצור מודל מתמחה שמניב ביצועים עדיפים בעולם תוכן ספציפי. מודלים אלו מכונים DAPT (domain adaptive pretraining).
לכאורה טריוויאלי ומתבקש: מודלים שאומנו (pre trained) ו/או כויילו (fine tuned) כירורגית להתמחות בעולמות רפואה או פיננסים למשל, אמורים להניב תשובות מדויקות יותר בשימושים ייעודיים ממודל גנרי עדכני.

לכאורה.
שני מחקרים שפורסמו מטילים ספק בפרדיגמה הזאת.

💰לקסם הבא אני זקוק ל-10 מיליון $ ומודל GPT3

בלומברג – ענקית פיננסים מהמובילות בעולם – השקיעה לפני שנה+ למעלה מ-10 מיליון $ ביצירת BloombergGPT – מודל שפה ייעודי מבוסס GPT3.5 שאומן על דאטה פיננסי קנייני וציבורי.

BloombergGPT הוא מודל שפה בן 50 מיליארד פרמטרים. הוא אומן מהבסיס – משימה יקרה השמורה בד"כ לשחקנים מובילים. הוכן dataset עצום שמתבסס על מידע פיננסי שנצבר מ-40 שנות פעילות, בתוספת מאגרי מידע פיננסיים ציבוריים שיצרו גוף-ידע של למעלה מ-700 מיליארד טוקנים אותם היא זיקקה ל 50.

היעד היה שאפתני והתוצאה סמוך להשקה היתה חד-משמעית: המודל של בלומברג הציג ביצועים טובים יותר בהשוואה למודלים דוגמת GPT3.5 במשימות פיננסיות, ולתוצאות דומות או עדיפות במשימות כלליות.

אמריקה, וורסאנו. או שלא תמיד?

במחקר מקיף שהתפרסם באוק 23 נמצא שמספר חודשים מאוחר יותר – מודל GPT4 החינמי הזמין לכל מביס אותו ברוב המבדקים.

הסיפור של BloombergGPT ממחיש בצורה הכי גרפית את העקרון של "שיפור אינטרינסי אקספוננציאלי" ביכולות מודלי שפה והמשמעות הדרמטית שלו על אסטרטגיות מוצר או הצעת ערך.

⚕️האם מודלים רפואיים מתמחים בהכרח עדיפים?

חוקרים מאוניברסיטאות קרנגי-מלון וג'ון הופקינס פרסמו לאחרונה מחקר שמטיל ספק דומה בתחום הרפואי. המחקר השווה בין מספר מודלי שפה מתמחים (טקסטואלים וחזותיים) לבין מודלי הבסיס הגנריים המקבילים.


ניתן לעובדות לדבר:

מודלים מתמחים טקסטואליים
הניבו תשובות נחותות בהשוואה לאחיהם "הלא משכילים" ב 38.2% מהמבדקים, השיגו תיקו ב 49.8% מהם, והביסו את אחיהם "הגנריים" רק ב- 12.1% מהמבדקים.

המודלים החזותיים
הביסו את אחיהם הגנריים רק ב 6.3% מהמבדקים, הגיעו לתיקו ב 81.3%, והובסו ב 12.5% מהמבדקים.

📈 מחשבות ותובנות שלדעתי ראוי שכל מקבל החלטות ישקול:

שיקלו להשקיע באימון או fine-tuning במקרים מאד מובחנים

דוגמאות: דאטה ייחודי ובעל משמעות דרמטית לאיכות התשובה, צורך בסמנטיקה עמוקה או רצון לנתח/לבנות גרף ידע בתחום מאד מתמחה.

"פקטרו" שיפור "אבולוציוני" במוצר שלכם שנובע משיפור במודל-השפה

קצב השיפור האקספוננציאלי של מודלים גנריים מאפשר לעתים לתכנן מפת דרכים שממנפת שיפור "עצמוני" במוצר ⭐שלכם⭐ שנובע מעצם השיפור במודל הגנרי השלוב בו.

נסו שלא "לנוון" שיפור זה בגלל ארכיטקטורת שילוב/פרומפטינג קשיחה.

טכניקות פרומפטינג מדויקות

(דוגמת COT , few shots) כמו גם הינדוס חכם של זרימת השימוש במודלי השפה הגנריים מוכחים כיכולים לשפר דרמטית את איכות ועקביות התשובות

📚 קישורים למחקרים בתגובה הראשונה.

כיצד לנווט בחכמה את מהפכת ה AI: ממהלכים טקטיים לטרנספורמציה ארגונית אסטרטגית

שינוי פרדיגמה: מהפכה עמוקה מכפי שנדמה

העולם העסקי חווה שינוי מהותי ועמוק עם כניסת הבינה המלאכותית "לחייו". חברות ייעוץ ומחקר מעריכות כי עד 2030, הבינה המלאכותית צפויה לתרום כ 15.7 טריליון דולר לכלכלה העולמית. בדרך לשם, הבינה המלאכותית מאתגרת ומשבשת את כללי המשחק לא רק ברובד התפעולי והטכנולוגי – אלא בעיקר ברמת הפרדיגמה הארגונית.

איך מרגיש השינוי הזה?

קצב תמורות אקספוננציאלי

מהפכות / טרנספורמציות טכנולוגיות קודמות התאפיינו בשינויים הדרגתיים יחסית וקצב הבשלה שאפשרו לארגונים להסתגל באופן מדוד אחראי ומתון, ואשר השפיעו באופן יחסית ממוקד על רבדים/יחידות ארגוניים. לעומתן, מהפכת הבינה המלאכותית מציבה בפנינו תמונת מציאות שונה לחלוטין: טכנולוגיה שמשנה את כללי המשחק בכל רובד ארגוני במקביל, בקצב אקספוננציאלי, ללא "נוסחה מנצחת" לאימוץ ארגוני מוצלח, ומאלצת חשיבה מחדש על הנחות יסוד ופרדיגמות עסקיות של הארגון בעידן החדש הזה.

 "כוח על" לכל עובד-ידע

אם לא די בכך, הבינה המלאכותית היוצרת והנגישות חסרת התקדים שלה יוצרות לראשונה מצב בו טכנולוגיה כה טרנספורמטיבית זמינה ונגישה פוטנציאלית לכל עובד ידע בכל רמה ותפקיד  in-the-flow-of-work ויכולה להקפיץ באופן דרמטי את האפקטיביות, האיכות, הפריון, והיצירתיות שלו מרמת הניהול והתכנון ועד לרזולוציה של משימה בודדת.

כל זאת, ללא צורך ברכישת מיומנויות טכנולוגיות, ללא צורך בפיתוח תוכנה, תקורת IT, או צורך בהטמעת מערכות ליבה ארגוניות מורכבות. בדיוק כפי שלא נעלה בדעתנו עובד-ידע שאינו שולט בסביבת Office בקרוב כל עובד ישלוט בארגז-כלי AI יומיומיים חיוניים שישפרו דרמטית את הפרודוקטיביות והיצירתיות שלו.

 דמוקרטיזציה וקומודיטציה של עולם התוכנה

ומהפרט לארגון: אנו עדים לתהליך מואץ ועמוק של קומודיטיזציה של עולם התוכנה. מה שפעם היווה חסם כניסה ומקור ליתרון תחרותי לגדולים, לעשירים ולעתירי טאלנט טכנולוגי, כעת הופך במהירות עצומה למוצר מדף נגיש, זמין כלכלית ובר-שיחלוף.

מערכות המידע הארגוניות "המסורתיות" מאבדות את הערך האינטרינסי המבדל שלהן, ובמקביל, הבינה המלאכותית הנגישה (לעתים עד רמת קוד פתוח חינמי לשימוש בלתי מוגבל) מתגלה ככוח טרנספורמטיבי שמסוגל לשנות מן היסוד את האופן שבו יחידים וארגונים מקבלים החלטות, מנהלים סיכונים, מזהים הזדמנויות ומייצרים ערך.

הפרדוקס האסטרטגי: מדוע ארגונים רבים מחמיצים את ההזדמנות האמיתית

עד כאן החלק הרומנטי.

בעוד מחקרים ודוחות עדכניים (בעיקר מארה"ב ואירופה) מעידים על אחוז גבוה (35-60%) מהארגונים שהצהירו כי הם כבר "משתמשים" ב Gen-AI בצורה כזו או אחרת, הרי שבפועל אחוז גבוה מאד מאלו המצהירים זאת מיישם זאת בפועל באחד מ או שילוב של 2 נתיבי אימוץ עיקריים:

א. הארגון מנסה לגבש "אסטרטגיית AI" נפרדת ועצמאית

גישה זו, המתייחסת ל-AI כאל עוד תחום טכנולוגי שדורש אסטרטגיה משל עצמו, היא – בעצמה – סוג של טעות אסטרטגית…

הפרדוקס טמון בעובדה שככל שהתועלות הפוטנציאליות המהותיות שמביאה עמה הבינה המלאכותית אמורה להשתלב ולהעצים את האסטרטגיה העסקית והמיקודים העסקיים של הארגון. במקום לראות ב-AI עוד הזדמנות טכנולוגית או דיסציפלינה נפרדת, עלינו להתייחס אליו ככוח טרנספורמטיבי שיכול:

  • לשדרג ולהאיץ את המיקודים העסקיים הקיימים
  • לדמיין מחדש את הצעות הערך והמודלים העסקיים
  • להעצים את היתרונות התחרותיים של הארגון
  • לשפר ללא הכר את יכולת קבלת ההחלטות וניהול הסיכונים

ב. הארגון מקדם "איים" של יוזמות נקודתיות וטקטיות

רוב הארגונים במשק כבר מקדמים / מתניעים מהלכים ויוזמות בתחום AI. חלקם מקדם פיילוטים או POC (Proof of concept) ליוזמות AI, מספקים הדרכות וסדנאות לחלק מהעובדים לשימוש בכלי Gen-AI מובילים. חלקם אף מטמיע פתרונות נקודתיים דוגמת בוטים של שרות או אוטומציות ברצפת המוצר והשירות.

איים של יוזמות, ואסטרטגיית AI עצמאית = סיכוי גבוה לתת מיצוי

פיילוט אינו טרנספורמציה, הדרכה לא יוצרת מיינדסט AI ואימוץ נרחב, ויישום של בוט שירות לא "יזיז את המחוג" במיקודים העסקיים. נדרשת חשיבה עדכנית יותר על הפוטנציאל הטרנספורמטיבי המהותי של AI בארגון. מבינה מלאכותית ככלי / operational enabler ל- transformative tool

האתגר המרכזי: ניווט חכם בים סוער של שינוי אקספוננציאלי

האתגר המרכזי העומד בפני ארגונים החפצים להתגבר על הפרדוקס הארגוני / אסטרטגי הזה, הוא משולש:

שיטות ניהול-שינוי הנוכחיות לינאריות – מהפכת ה AI היא אקספוננציאלית

ראשית, רוב פרקטיקות ניהול השינוי ומודלי ההפעלה והניהול המסורתיים אופטימליות לעידן של שינויים לינאריים ומתונים, עבורו קיים playbook מוכח לאימוץ והטמעה של טכנולוגיות חדשות. אולם בעידן הנוכחי של שינוי אקספוננציאלי, כלים אלו פשוט הרבה פחות אפקטיביים.

להמתין שהעת תבשיל משמעו לפתוח פיגור מהותי

שנית, אסטרטגיית המתנה (Wait Strategy) שנראית לכאורה זהירה ואחראית, עלולה ליצור פער בלתי ניתן לגישור מול מתחרים שכבר החלו במסע הטרנספורמציה. כמו בכל מהפכה טכנולוגית, אלו הנעים ראשונים קדימה כבר ימנפו את היתרון התחרותי שהשיגו בעזרת AI כדי ליצור פער, בידול, נתח שוק, או נכסים מוחשיים רבי ערך אחרים – נכסים שישמרו על ערכם גם אחרי שכל השחקנים האחרים כבר יאמצו AI.

הייפ ורעש לבן מקשים לקבל החלטות

שלישית, הקצב המסחרר של ההתפתחויות בתחום מייצר "רעש לבן" שמקשה על קבלת החלטות אסטרטגיות מבוססות ותקפות. ארגונים מתקשים להבחין בין מגמות משמעותיות לבין הייפ זמני וטרנדים חולפים, בין הזדמנויות אמיתיות לבין חתונה-קתולית עם טכנולוגיה או תפיסה קניינית.

לסיכום:

תמונת המצב הנוכחים היא שארגונים רבים שאינם ארגוני AI – נאבקים לנווט במסע לאימוץ והטמעה ארגונית של בינה מלאכותית בליבת העסק, ובלב העובדים. הם חווים את המורכבות של ריבוי גישות כלליות, איים של יוזמות ופרויקטים שמיעוטם מבשיל לסביבת הייצור, וונדורים עם פרדיגמות כלים ופלטפורמות "גן סגור", אימוץ נקודתי ע"י עובדים, וחוסר בהירות באשר לתמונת העתיד.

אז מה עושים?

שלושת גלגלי התנופה שיעזרו לארגון להתמודד עם האתגרים:

GAIN: מודל הפעלה "עדכני" לניהול טרנספורמציית AI

אז סיכמנו שמהפכת הבינה המלאכותית מציבה בפני ארגונים אתגר ייחודי: כיצד להוביל טרנספורמציה ארגונית בעידן שבו אין playbook מוכח, קצב השינויים אקספוננציאלי, וההשפעה חודרת לכל רובד בארגון.

המענה לאתגר המשולש הזה דורש מסגרת חשיבה חדשה – מודל הפעלה עדכני – המתבסס על שלושה גלגלי תנופה ארגוניים המזינים ומעצימים זה את זה בדרך לארגון מועצם AI.

אנחנו מכנים את מודל ההפעלה הזה GAIN (וזו גם שמה של פרקטיקת ה AI הצומחת במהירות שלנו בשטראוס).

GAIN מתבססת על התובנה שטרנספורמציית AI מוצלחת דורשת סינרגיה בין שלושה מרכיבים קריטיים:

  • אוריינות AI ואימוץ נרחב ואחראי בקרב כלל העובדים, בכל יחידות ורמות הארגון
  • זיהוי והבשלה של יוזמות AI מובילות והבשלה של תשתית מידע/IT "מאפשרת"
  • תשתית ניהולית תומכת – מצפן לניווט ארגוני חכם בטרנספורמציה.

כל אחד מהמרכיבים הללו הוא תנאי הכרחי אך לא מספיק בפני עצמו – רק השילוב ביניהם מייצר את גלגל התנופה הארגוניהאינרציה הארגונית הנדרשת לטרנספורמציה ומיצוי מוצלחים ברמה האסטרטגית.

הבה נסקור בקצרה כל אחד מגלגלי התנופה:

GAIN Impact/Adoption

מעבר להדרכות: הקניית מיינדסט של אוריינות, כישורים ומצוינות AI לעובדי הידע

הדרכות והנגשת כלי AI ,חשובות ככל שיהיו, אינן מספיקות ליצירת אימוץ נבחר ובר-קיימא של AI בקרב עובדי הידע בארגון. נדרשת גישה מערכתית שיוצרת אוריינות AI עמוקה, מטפחת סביבה תומכת ומייצרת מוטיבציה מתמשכת לאימוץ והתפתחות. גלגל התנופה הראשון מתמקד ביצירת התשתית האנושית והתרבותית הנדרשת, בין היתר:

  • Buy-in ארגוני חכם ומותאם אישית – מהנהלה בכירה ועד לאחרון עובדי-הידע
  • הקניית אוריינות, מיינדסט וארגז-כלי AI לכל רמות הארגון באופן שלוב ביום-יום העסקי
  • יצירת סביבה ארגונית וכלי IT מעודדים ומאיצים שימוש, שימוש חוזר ושיתוף ידע
  • הטמעת "כלכלה תמרוץ/הכרה" ארגונית המאיצה buy-in, אימוץ ושיתוף ויראליים
  • זיהוי, טיפוח והסמכת מובילי טרנספורמציה כמאיץ אימוץ וכמרכז מצוינות
  • יצירה של סביבת למידה רציפה in the flow of work למשך חיי הארגון

GAIN Value

מינוף הזדמנויות למיצוי AI ויצירת תשתית תומכת

האימוץ הנרחב של AI בארגון יוצר מצע חיוני לזיהוי והבשלה של יוזמות AI מובילות. עובדים ומנהלים המצוידים ב AI-mindset ובאוריינות AI מתקדמת משלבים את "חוכמת השטח" העסקית שלהם עם הגופים הטכנולוגיים בארגון כדי לזהות לאפיין ולתעדף הזדמנויות למינוף AI בתהליכי הליבה ובמיקודים העסקיים של הארגון, ובכלל זה:

איתור הזדמנויות / יוזמות AI מובילות

  • כלים ופתרונות לזיהוי ואפיון יוזמות bottom-up ומונחי הנהלה
  • מיפוי רב ממדי ברבדי המוצרים, העובדים, התהליכים, הדאטה, וה IT.
  • זיהוי הזדמנויות AI בנכסי Data ארגוניים וחשיבת AI Data thinking

תיעדוף מאוזן מבוסס ערך עסקי ומידת ישימות

  • יישום מודל הערכה רב-ממדי לסינון ותיעדוף יוזמות AI
  • איזון בין תועלות מיידיות לפוטנציאל אסטרטגי ארוך טווח

הערכת בשלות טכנולוגית וארגונית ליישום – מוכנות Data, IT, רגולציה, בעלי תפקיד וכו'

ניהול פורטפוליו יוזמות חכם ומאוזן

  • יצירת תמהיל אופטימלי של יוזמות קצרות וארוכות טווח
  • קידום תשתיות מאפשרות בתחומי ה Data וה IT

GAIN Confidence

המצפן הניהולי החדש לניווט בטרנספורמציה הארגונית

גלגל התנופה השלישי מספק את התשתית הניהולית החיונית להצלחת הטרנספורמציה. הוא מאפשר למקבלי ההחלטות לנווט את המהלך המורכב באמצעות:

גיבוש מודל-הפעלה ושפה ארגונית אחידה לניהול טרנספורמציית AI

  • גיבוש מודל הפעלה לתיעדוף, קבלת החלטות, וקידום יוזמות
  • גיבוש מבנה ארגוני והגדרות תפקיד למבנים ולכישורים החדשים

מפת דרכים דינמית וגמישה

  • תוכנית פעולה דינאמית ומדורגת , ידידותית להתאמות ועדכונים תדירים
  • יכולת תגובה מהירה לשינויים טכנולוגיים ועסקיים

ניהול פורטפוליו יוזמות AI בצורת "תיק השקעות" ארגוני

  • ראייה הוליסטית של כלל היוזמות והפרויקטים, הערכה שוטפת של תשואה על השקעה
  • ניהול סיכונים מושכל ברמת הפורטפוליו

הסינרגיה והסנכרון בין הגלגלים: המפתח לניווט מוצלח בכל תוואי שנבחר

שלושת גלגלי התנופה אינם פועלים בוואקום. הם מזינים ומעצימים זה את זה באופן מתמיד:

  • אוריינות AI נרחבת מגבירה פריון, מוטיבציה לאימוץ ומעצימה קידום יוזמות מובילות
  • הצלחות ביוזמות מובילות מייצרות חוויות הצלחה ומאיצות אימוץ נרחב, ויוזמות אסטרטגיות
  • תשתית ניהולית חזקה מאפשרת היגוי חכם ואחראי ומינוף ההצלחות להישגים עסקיים מדידים 

ומה הלאה? הדרך לארגון אקספוננציאלי

ניווט במסע המרתק לאימוץ AI ארגוני בשיטת גלגלי התנופה של GAIN, לא רק שמסייע למקבלי ההחלטות בארגון לנווט בצורה חכמה ואפקטיבית בטרנספורמציה הארגונית של AI, אלא יכול אף לחשל ולהוביל בהמשך ליצירת "ארגון אקספוננציאלי" – ארגון עם מערכת הפעלה ניהולית עדכנית שמסוגל לא רק להסתגל בקצב-מואץ ומערכתי לשינויים וטרנספורמציות טכנולוגיות או עסקיות, אלא גם ליצור ולמנף הזדמנויות בקצב הולך וגובר – תוך יישום אותם שלושת גלגלי התנופה לאימוץ ארגוני, טכנולוגי, וניהולי מתואם, סינרגטי ומהיר.

ארגונים שיצליחו במשימה זו ייהנו מיתרונות מצטברים ומתחזקים:

  • יכולת קבלת החלטות מהירה ומדויקת יותר, מבוססת Data ומועצמת AI
  • חדשנות רציפה בתהליכים ובמודלים עסקיים
  • יתרון תחרותי מבוסס על נכסי מידע אסטרטגיים (Data, מודלים של AI)
  • תרבות ארגונית של למידה והתפתחות מתמדת 

GAIN. נעים להכיר 🙂

GAIN, פרקטיקת ה AI הצומחת במהירות של שטראוס גובשה כמענה ישיר לאתגרים הייחודיים של עידן ה AI. ההתמחות שלנו שלנו מבוססת על שילוב של:

  • ניסיון עשיר בליווי טרנספורמציות ארגוניות, דיגיטליות, ועסקיות מורכבות
  • הבנה מעמיקה של דינמיקת השינוי האקספוננציאלי בעידן ה AI
  • היכרות מעמיקה עם אתגרי אימוץ AI בארגונים גדולים
  • מסגרת חשיבה הוליסטית המשלבת טכנולוגיה, תהליכים ואנשים

אנו מזמינים אתכם לגלות כיצד GAIN יכולה לסייע לארגון שלכם לנווט בהצלחה את המסע המאתגר לעבר עתיד מועצם AI – עתיד שבו הארגון שלכם לא רק מסתגל לשינויים, אלא מוביל אותם.

למידע נוסף על כיצד GAIN יכולה לסייע לארגון שלכם בטרנספורמציית  AI, צרו קשר עם צוות המומחים שלנו.

חנן אליאב סמנכ"ל אסטרטגיה: Hanan@s-strategy.com 0523994958

מוטי קריספיל, ראש תחום AI בשטראוס אסטרטגיה  0525565758 Moti@s-strategy.com

ממשבר להזדמנות – מצפן המגמות העסקיות והטכנולוגיות שלנו ל-2025

מה צפויות להיות המגמות העסקיות המרכזיות ב-2025? כיצד תיראה מפת התחרות העסקית והטכנולוגית במגזרים השונים בישראל?

השנה החולפת היתה מהקשות שידעה המדינה. אך דווקא מתוך משבר עמוק, גדול ככל שיהיה, נוצרת גם הזדמנות לשינוי. הזדמנות לצמיחה לאומית, אישית וגם עסקית. המלחמה הפתאומית מה-7 באוקטובר 2023 טלטלה את יסודות המשק הישראלי וחידדה את חשיבותה הקריטית של היערכות איתנה להתמודדות עם מצבי קיצון. המציאות החדשה יצרה אי וודאות שלא פסחה על אף מגזר או תחום. היכולת לפעול בצורה גמישה, יצירתית תוך שיתוף פעולה חוצה-מגזרים הפכה לנכס קריטי.

כך נולד המצפן העסקי אסטרטגי שלנו ל-2025, מצפן לניווט עסקי וארגוני בעידן החדש.

כמומחים, בעלי ניסיון רב- שנים בשוק הישראלי, ניתחנו במסמך זה את המגמות הבולטות במגזרים מרכזיים, את האתגרים והקשיים שאיתם נאלצו להתמודד יחד עם חזון מעורר השראה לעתיד טוב יותר. ראיינו עשרות מנכ"לים, מנהלות בכירות וגורמי מפתח עסקים וטכנולוגיים ממגוון רחב של חברות גדולות במשק הישראלי. שאלנו כל אחת ואחד שתי שאלות: מה לדעתך יהיו המגמות העסקיות-טכנולוגיות המרכזיות ביותר במגזר שלך ב-2025? ומה לדעתך היתה ההחמצה המשמעותית ביותר ב-2024?

אצרנו וזיקקנו חוכמת חיים מצרפית מדהימה של מנהלים.ות בכירים ומקבלי.ות החלטות בתהליך המעניק מצפן ניווט יוצא דופן ברוחבו ועומקו – לכל מנהל.ת ומנהיג החפץ לנווט את הארגון שלו בהצלחה במים ובימים הסוערים הללו.

כאן המקום לומר תודה עמוקה לכן.ם, מובילי.ות המשק הישראלי, על שהקדשתם מזמנכם היקר ושיתפתם בתובנותיכם העמוקות. ראייתכם העסקית הרחבה והניסיון העשיר שלכם מסייעים לכולנו להיערך טוב יותר לאתגרי העתיד ולהזדמנויותיו.

 

הירשמו עכשיו כדי לקבל את מסמך הפוקוס ל-2025.