רופא מתמחה, רופא כללי , וקידמה אקספוננציאלית 🤖

בשבת לפנות בוקר נערך בטקסס קרב אגרוף בין מייק טייסון (גיבור מוערץ) לבין ג'ייק פול אקס-יוטיובר שהוסב למתאגרף. התוצאה צפויה לצערי – 30 שנות הפרש הן רמז עבה… אבל, הקרב הזה הזכיר לי שרציתי לכתוב על "דו-קרב" אחר בעל תוצאות הרבה פחות צפויות: מודלי שפה גנריים מול מודלי שפה מתמחים.

🎯 ממון רב מושקע באימון ו/או fine-tuning של מודלי שפה

בתקווה ליצור מודל מתמחה שמניב ביצועים עדיפים בעולם תוכן ספציפי. מודלים אלו מכונים DAPT (domain adaptive pretraining).
לכאורה טריוויאלי ומתבקש: מודלים שאומנו (pre trained) ו/או כויילו (fine tuned) כירורגית להתמחות בעולמות רפואה או פיננסים למשל, אמורים להניב תשובות מדויקות יותר בשימושים ייעודיים ממודל גנרי עדכני.

לכאורה.
שני מחקרים שפורסמו מטילים ספק בפרדיגמה הזאת.

💰לקסם הבא אני זקוק ל-10 מיליון $ ומודל GPT3

בלומברג – ענקית פיננסים מהמובילות בעולם – השקיעה לפני שנה+ למעלה מ-10 מיליון $ ביצירת BloombergGPT – מודל שפה ייעודי מבוסס GPT3.5 שאומן על דאטה פיננסי קנייני וציבורי.

BloombergGPT הוא מודל שפה בן 50 מיליארד פרמטרים. הוא אומן מהבסיס – משימה יקרה השמורה בד"כ לשחקנים מובילים. הוכן dataset עצום שמתבסס על מידע פיננסי שנצבר מ-40 שנות פעילות, בתוספת מאגרי מידע פיננסיים ציבוריים שיצרו גוף-ידע של למעלה מ-700 מיליארד טוקנים אותם היא זיקקה ל 50.

היעד היה שאפתני והתוצאה סמוך להשקה היתה חד-משמעית: המודל של בלומברג הציג ביצועים טובים יותר בהשוואה למודלים דוגמת GPT3.5 במשימות פיננסיות, ולתוצאות דומות או עדיפות במשימות כלליות.

אמריקה, וורסאנו. או שלא תמיד?

במחקר מקיף שהתפרסם באוק 23 נמצא שמספר חודשים מאוחר יותר – מודל GPT4 החינמי הזמין לכל מביס אותו ברוב המבדקים.

הסיפור של BloombergGPT ממחיש בצורה הכי גרפית את העקרון של "שיפור אינטרינסי אקספוננציאלי" ביכולות מודלי שפה והמשמעות הדרמטית שלו על אסטרטגיות מוצר או הצעת ערך.

⚕️האם מודלים רפואיים מתמחים בהכרח עדיפים?

חוקרים מאוניברסיטאות קרנגי-מלון וג'ון הופקינס פרסמו לאחרונה מחקר שמטיל ספק דומה בתחום הרפואי. המחקר השווה בין מספר מודלי שפה מתמחים (טקסטואלים וחזותיים) לבין מודלי הבסיס הגנריים המקבילים.


ניתן לעובדות לדבר:

מודלים מתמחים טקסטואליים
הניבו תשובות נחותות בהשוואה לאחיהם "הלא משכילים" ב 38.2% מהמבדקים, השיגו תיקו ב 49.8% מהם, והביסו את אחיהם "הגנריים" רק ב- 12.1% מהמבדקים.

המודלים החזותיים
הביסו את אחיהם הגנריים רק ב 6.3% מהמבדקים, הגיעו לתיקו ב 81.3%, והובסו ב 12.5% מהמבדקים.

📈 מחשבות ותובנות שלדעתי ראוי שכל מקבל החלטות ישקול:

שיקלו להשקיע באימון או fine-tuning במקרים מאד מובחנים

דוגמאות: דאטה ייחודי ובעל משמעות דרמטית לאיכות התשובה, צורך בסמנטיקה עמוקה או רצון לנתח/לבנות גרף ידע בתחום מאד מתמחה.

"פקטרו" שיפור "אבולוציוני" במוצר שלכם שנובע משיפור במודל-השפה

קצב השיפור האקספוננציאלי של מודלים גנריים מאפשר לעתים לתכנן מפת דרכים שממנפת שיפור "עצמוני" במוצר ⭐שלכם⭐ שנובע מעצם השיפור במודל הגנרי השלוב בו.

נסו שלא "לנוון" שיפור זה בגלל ארכיטקטורת שילוב/פרומפטינג קשיחה.

טכניקות פרומפטינג מדויקות

(דוגמת COT , few shots) כמו גם הינדוס חכם של זרימת השימוש במודלי השפה הגנריים מוכחים כיכולים לשפר דרמטית את איכות ועקביות התשובות

 

עוד כתבות עבורך

איך מסובבים נימיץ – הובלת שינוי טכנולוגי אפקטיבי

האם גם אתם מצאתם את עצמכם מתמודדים עם תוכנית אסטרטגית טכנולוגית מרשימה שבסופו של דבר הצטמצמה לרשימת שו"שים ומעט טכנולוגיות חדשות? אתם לא לבד.

רבים מהארגונים כיום מתקשים לגשר על הפער בין חזון טכנולוגי שאפתני לבין מימוש בפועל. בעידן שבו הטרנספורמציה הדיגיטלית הפכה מאופציה לחובה, האתגר האמיתי הוא להוביל שינוי טכנולוגי באופן שיטתי ומתמשך, מבלי לערער את היציבות התפעולית של הארגון. הקושי נובע משילוב של גורמים: מורכבות טכנולוגית, מגבלות משאבים, התנגדויות ארגוניות, ולעתים קרובות – היעדר מתודולוגיה מתאימה.

הגישה המנצחת: מתודולוגיה גמישה בשלושה רבדים – להקשיב, להגיב בזמן, לתכנן מניסיוננו המעשי בליווי עשרות ארגונים בתהליכי שינוי טכנולוגי, זיהינו כי ההצלחה טמונה ביכולת לפעול במקביל בשלושה רבדים משלימים:

1. לתכנן – יצירת תשתית איתנה לשינוי – בטרם נצלול לפרטים הטכניים, חיוני לבנות את הבסיס הארגוני והתרבותי. זה מתחיל בחזון ברור ומשכנע שמסביר מדוע השינוי נדרש, עובר דרך גיוס תמיכת ההנהלה הבכירה וכולל זיהוי וטיפוח "סוכני שינוי" בארגון – אותם מובילי דעה שיסחפו אחריהם את שאר העובדים. כל זאת, תוך יצירת ערוצי תקשורת פתוחים לזרימת מידע דו- כיוונית.

2. להגיב בזמן – ניהול אפקטיבי של התהליך – השינוי הטכנולוגי הוא מסע, לא אירוע חד-פעמי. ניהול המסע דורש תכנית ברורה שמפרקת את המהלך לצעדים מוגדרים וברי-השגה. לצד זאת, נדרש ניהול סיכונים פרואקטיבי, מדידה שוטפת של ההתקדמות וחגיגה של הצלחות קטנות לאורך הדרך. למדנו שהצלחות מוקדמות, גם אם צנועות, בונות מומנטום ואמון ביכולת הארגון להשתנות.

3. להקשיב – התמודדות חכמה עם התנגדויות – אנשים הם לב ליבו של כל שינוי ולכן ההיבט האנושי הוא קריטי. הצלחה מתחילה בהקשבה אמיתית לחששות העובדים, ממשיכה בשיתופם בתכנון ובעיצוב השינוי וכוללת הכשרה מקיפה והקניית הכלים הנדרשים, תוך ליווי לאורך התהליך.

הסיפור מאחורי המספרים: תיעדוף חכם כמפתח להצלחה באחד הארגונים המובילים במשק שליווינו, נתקלנו באתגר מוכר: רשימה ארוכה של פרויקטים טכנולוגיים עם משאבים מוגבלים. במקום להסתמך על תחושות בטן או לחצים פוליטיים, פיתחנו יחד עם הארגון מודל תיעדוף משוקלל המבוסס על ארבעה פרמטרים: ערך לארגון (30%), סיכון באי- ביצוע (40%), מאמץ נדרש (10%) ועלות (20%).

המודל הפשוט אך האפקטיבי אפשר לארגון לקבל החלטות מושכלות ושקופות וגם להתאים את התיעדוף בקלות כאשר חלו שינויים בסביבה העסקית. התוצאה המרשימה: עלייה באחוז הפרויקטים שהושלמו בהצלחה מ- 40% ל- 75% תוך שנה אחת בלבד. מדידה שמובילה לשיפור: מה שנמדד מתבצע הגדרת מדדי הצלחה ברורים היא אחד המרכיבים הקריטיים, והם צריכים לכסות שלושה עולמות תוכן:

מדדים עסקיים (ROI, TTM, חיסכון בעלויות), מדדים תפעוליים (זמינות מערכות, זמני תגובה, איכות שירות) ומדדי חדשנות (אימוץ טכנולוגיות חדשות ושיפור תהליכים). במפעל תעשייתי שליווינו, המדידה השיטתית הייתה המפתח להצלחה. הגדרנו מדדים ספציפיים לפרויקט שיפור ניהול המלאי ובכל ישיבת היגוי עקבנו אחר ההתקדמות.

מה הופך שינוי טכנולוגי למוצלח?

מניסיוננו העשיר בהובלת שינויים טכנולוגיים, זיקקנו טיפים מעשיים שיכולים לעשות את ההבדל:

1. תהיו גמישים – התאימו את התוכנית ליכולת ההכלה של הארגון – אין טעם בתוכנית מפוארת שאין סיכוי ליישם. בנו תוכנית המביאה בחשבון את המשאבים הזמינים, התרבות הארגונית והמשימות הנוספות על הפרק. התוכנית צריכה להיות גמישה דיה כדי להתאים את עצמה בהתאם לשינויים בסביבה העסקית והטכנולוגית.

2. חישבו "מוצר", לא רק "פרויקט" – אחד השינויים המשמעותיים שאנו רואים בארגונים מצליחים הוא המעבר מחשיבה פרויקטלית (התחלה- סוף) לחשיבת מוצר (התפתחות מתמדת). גישה זו מייצרת רצף של ערך לאורך זמן.

3. הקשיבו – נהלו דיאלוג פתוח ורציף – אין תחליף לתקשורת טובה. קיימו שיח שוטף, שקוף וכן עם כל הגורמים המושפעים מהשינוי, והקשיבו באמת למה שיש להם לומר.

4. פתחו "חוברת הפעלה" ארגונית – ארגונים מצליחים מפתחים מתודולוגיה סדורה לניהול שינויים טכנולוגיים, הכוללת תבניות עבודה, שלבים מוגדרים ותהליכי בקרה. זהו נכס ארגוני רב- ערך שמשתבח עם הזמן והניסיון.

עם המבט קדימה: הובלת שינוי בעולם משתנה העתיד מביא עמו אתגרים חדשים שישפיעו על האופן שבו נוביל שינויים טכנולוגיים. המפתח להצלחה טמון ביכולת לפעול בהתאם למתודולוגיה סדורה וגמישה תוך ניהול במקביל של שלושת הרבדים של השינוי – הטכנולוגי, התהליכי והאנושי-תרבותי.

אנו מזמינים אתכם לבחון את מודל התיעדוף והמדידה הקיים בארגונכם ולשאול: האם הוא משקף נכונה את האיזון הנדרש? האם מוגדרים מדדי הצלחה ברורים לכל יוזמה? וכיצד נערכים להובלת שינוי אפקטיבי בעידן החדש?

כשמתודולוגיית GAIN שלנו הופכת לסטנדרט אימות AI ארגוני

לשמחתי, אצלנו בשטראוס התקופה גדושה בלווי ארגונים במסע לאימוץ בינה-מלאכותית. לצערי, זה גם התירוץ מדוע נותר לי מעט זמן לכתוב פוסטים ומאמרים. אבל, חייב לשתף אתכם בחוויה – איך Open AI ו- Perplexity גרמו לי להסמיק "בשידור חי"…

 

מעשה שהיה כך היה…

אנחנו בשטראוס אסטרטגיה רואים שליחות להפיץ את תפיסת "AI-first mindset" בקרב מנהלים, קולגות ואנשי מקצוע – במאמרים, וובינרים, הסכתים, חשיפות הנהלה, ועוד. ברמה האישית אני שגריר נלהב של המיינדסט הזה. איך זה מתבטא "קלינית"? מהם תופעות הלוואי? המממ…. למשל, כשלקוח או קולגה שואלים שאלה במייל או בוואטסאפ שאני סבור שעוזרי ה AI הווירטואליים שלי יכולים להשלים ולהעשיר את התשובה שלי, פעמים רבות אני פשוט מצרף לתשובה "האנושית" שלי גם קישור לתשובה שנתן chatgpt או perplexity לשאלה הזו. אני (כמובן) מעודד אותם להמשיך בשיחה "מאותה נקודה", בואכה התשובה הספציפית עבורם.

 

בשבוע שעבר, ההרגל הזה תפס אותי בהפתעה…

באחד הכנסים המקצועיים מצאתי את עצמי משוחח עם סמנכ"ל טכנולוגיות בחברה פיננסית גדולה. על רקע קפה דהוי משהו סיפרתי לו על מודל ההפעלה שגיבשנו בשטראוס לאימוץ ארגוני של בינה מלאכותית, GAIN שמו, ועל לקוחות שכבר מיישמים אותו. הוא לקח לגימה מהקפה (וביס מהבורקס) ושאל אותי אם יש עוד best-practices ואסטרטגיות אימוץ AI הוליסטיות מוכרות שנפוצות בישראל. סאקר של המיינדסט הזה של לשלב כוחות עם AI, סיננתי לו "בוא נשאל את chatgpt בדיוק את זה".

בעודי שואל את ChatGPT, הולכת ונולדת בי החוצה תחושת חרטה וכפכוף עצמי. לחוץ שעוד רגע ג'פטו ילרלר name dropping של אסטרטגיות ופרקטיקות ממותגות מבית היוצר של ענקיות ייעוץ גלובליות…

 

אבל הי, לא באנו ליהנות…

טו-לייט…ואז ג'פטו ענה. והתשובה הפתיעה וחייכה אותי, מפיצה חום נעים בבית החזה…ג'פטו מספר כבר בהתחלה על GAIN , מבית שטראוס אסטרטגיה, ומפרט את מרכיבי האסטרטגיה שלה. עשירית שניה אחרי, פרפלקסיטי עונה תשובה דומה ומציג את GAIN כאסטרטגיה ראשונה לאימוץ AI ארגוני.אימאל'ה ואבאל'ה!

מילא לשתף את כל העולם כמה המתודולוגיה שלנו לאימוץ AI ארגוני יכולה ליצור קסמים בארגון. אבל זה וואו לגמרי לגלות ששני יישומי ה Gen-AI ב top 3 מספרים על GAIN שלנו כשיטה מרכזית לאימוץ AI ארגוני…ואם כבר "מחשבה יוצרת מציאות": שבוע מאוחר יותר פגשנו 2 מכרזים לגיבוש מודל הפעלה לאימוץ AI ארגוני, והדרישות לספקים מנוסחות בהלימה כמעט מוחלטת למודל האימוץ שלנו…כנראה שאתם עושים משהו טוב, אמר לי חבר טוב.

כנראה, עצמי עונה לי.

בתמונות – מי אנחנו שנתווכח עם התשובות שנתנו עוזרי ה AI שלנו…

 

 

וובינר מנהיגות טכנולוגית: כיצד להפוך את מערכות המידע למנוע צמיחה עסקי

וובינר מקצועי למובילים טכנולוגיים: מנהיגות טכנולוגית כמנוע צמיחה 🚀

מעל 180 משתתפים הצטרפו לוובינר שלנו "מנהיגות טכנולוגית: כיצד להפוך את מערכות המידע למנוע צמיחה עסקי", שבו עסקנו באתגרים המרכזיים של מובילי IT בארגונים.

על מה דיברנו?
✅ איך מגבשים אסטרטגיית IT שתהיה גם יציבה וגם גמישה
✅ כיצד למנף בינה מלאכותית מתקדמת – גם ברמת האפליקציות וגם בתשתיות
✅ איך מובילים שינוי טכנולוגי משמעותי מבלי לפגוע ביציבות התפעולית
✅ התמודדות חכמה עם מערכות לגאסי והתקדמות למודרניזציה

🎙️ תודה ענקית לדוברות ולדוברים שלנו, שהביאו תובנות מעשיות מהשטח ויצרו שיח מעורר השראה! 📌
מוזמנים לצפות בהקלטה ולהעמיק בתובנות החשובות ששיתפנו. צפייה מהנה! 🔗 ⬇️