טעינה לעתיד: הסיפור מאחורי המסע העסקי-דיגיטלי-טכנולוגי של ספקית טעינת הרכבים החשמליים המובילה EV-Edge

טעינה לעתיד: הסיפור מאחורי המסע העסקי-דיגיטלי-טכנולוגי של ספקית טעינת הרכבים החשמליים המובילה EV-Edge 

הסיפור של EV-Edge מתחיל עם חזון – להוביל את מהפכת התחבורה החשמלית בישראל ולהוביל את שוק טעינת הרכבים החשמליים בישראל, לאפשר את חוויית הטעינה הטובה ביותר בישראל בכל מקום ובכל זמן. עם למעלה מ 3,000 שקעי טעינה מנוהלים, ועם קהל המשתמשים רשומים באפליקציה הגדול בישראל.  EV-Edge הינה מחלוצות שוק הטעינה לרכבים חשמליים בישראל, מפעילת רשת הטעינה הגדולה בישראל ומובילה בחוויית הטעינה. כמו כל חברה שמביטה קדימה, גם EV-Edge הבינה שיש רגעים שבהם יש צורך לעשות את הקפיצה הבאה, לשדרג  את היכולות העסקיות-דיגיטליות, חווית הלקוח, הכלים והטכנולוגיה, כדי להמשיך להוביל גם את המחר.

אתגר בשוק בצמיחה מהירה

שוק הרכבים החשמליים בישראל צומח בקצב מהיר מאוד, והציפיות של הנהגים עולות יחד איתו. EV-Edge, כחלק מקבוצת יוניון (Union Group) שמייצגת מותגים כמו טויוטה, ג'ילי' לקסוס, וזיקר בישראל, הבינה כי על מנת להמשיך ולשמור על מעמדה כמובילת שוק, היא חייבת לשדרג את מערכת הליבה של החברה בעולם ניהול הטעינה Charging Management System – CMS)). המערכת היוצאת שירתה את EV-Edeg נאמנה בחמש השנים האחרונות מאז היווסדה, אך כמו כל מערכת עסקית-טכנולוגית, גם היא הגיעה לשלב שבו אינה יכולה לעמוד עוד בדרישות המשתנות של השוק ובצרכים העסקיים והתפעוליים של החברה.

אתגר זה הוא חלק מהותי מתהליך אסטרטגי עסקי-דיגיטלי-טכנולוגי מעמיק שהחל לפני כשנה וחצי בו הובילה שטראוס יחד עם המנהלים של EV-Edge מהלך מהיר ופרקטי מאוד של הגדרת היעדים והמטרות האסטרטגיות של EV-Edge במסגרת מפת הדרכים העסקית-דיגיטלית-טכנולוגית של החברה, ושכלל בין היתר גם המלצה על החלפת מערכת ה CMS – בשלב בו הוגדרו היעדים, והפרויקטים ליישום בתחומים השונים. בעולם תוכן זה של ניהול הטעינה הוגדרה משימה ברורה: לסייע ל EV-Edge למצוא, לאפיין וליישם מערכת חדשה שתהיה חזקה, גמישה, ורובוסטית – מערכת שתוכל להתמודד עם כל אתגר ותאפשר לספק חוויית משתמש וחווית לקוח מעולה בכל היבט.

המסע למציאת המערכת האידיאלית

חיפוש אחר מערכת חדשה אינו רק תהליך טכני, אלא מסע מרתק עסקי, ארגוני, טכנולוגי שבו כל פרט קטן יכול לעשות את ההבדל. תהליך זה כלל בחינה של מספר חלופות שונות, כל אחת מהן עם יתרונות וחסרונות משלה. חלק מהחלופות היו פרי עבודתן של חברות שממוקדות פרויקטים, ואחרות שייכות לחברות עם גישה ממוקדת מוצר. שתי הגישות הללו מייצרות פתרונות שונים לגמרי, ומעלות שאלות קריטיות: איזה סוג תמיכה יתקבל ? האם הפתרון יתאים לצרכים המתפתחים של השוק ? ומה תהיה השפעת ההחלטה הזו על הלקוחות הקיימים ? ועוד.

כדי לא להשאיר שום דבר ליד המקרה, EV-Edge החליטה ללכת "על רטוב" ולהתקין עמדות טעינה אמיתיות באתרים שונים לצורך בדיקות שטח מקיפות. המנכ"ל, בעצמו בוגר הפקולטה להנדסת חשמל בטכניון בהצטיינות, הקפיד יחד עם צוות העבודה על תהליך מקצועי ומדוקדק עד אחרון הפרטים. החברות שנבחנו התרשמו מאוד מהעומק והמקצועיות של התהליך, וחוו תהליך בחינה שלא היה כמותו.

שדרוג ללא עצירה

ההחלטה הסופית התקבלה, אבל המסע לא הסתיים שם. תהליך המיגרציה שהתחיל היה עצום בממדיו ובמורכבותו – אינטגרציה של חומרה, תוכנה, ועמדות טעינה חדשות, עם התהליכים העסקיים הרלוונטיים, יחד עם מעבר של מספר עצום של רשומות נתונים של לקוחות קיימים, כולל הפרטים האישיים ומודלי התשלום שלהם, הכל מבלי לגרום להם להרגיש כל שינוי או להפסיד דקה של טעינה. זה היה תהליך מורכב וחסר תקדים, אך גם כזה שהבטיח את מעמדה של EV-Edge כמובילת השוק במשק, עם מערכת חדישה, אמינה ומתקדמת.

המערכת החדשה כללה גם מגוון API's המאפשרים לחברות צד שלישי ויזמים ליצור ולהעניק באמצעותה ערך מוסף ללקוחות והתאמה אישית (פרסונזליציה מבוססת דאטה), ולהרחיב את האפשרויות ואת חוויית הלקוח עד לרמות שלא נראו כמותן בישראל.

המומחים שהובילו את הדרך

לאורך כל הדרך, צוות המומחים של שטראוס אסטרטגיה בעולם העסקי, בעולם הדיגיטל והדאטה, בעולם הטכנולוגיה והתשתיות, ובעולם ניהול השינוי ליווה את מנהלי EV-Edge, החל מהשלב הראשון של הגדרת מפת הדרכים העסקית-דיגיטלית-טכנולוגית ובניית תכנית העבודה הפרטנית למימושה, דרך מעבר מהיר מאוד לשלב גיבוש הדרישות למערכת הליבה והתהליכים העסקיים בהם היא תומכת, עבור בהובלת תהליך הערכת החלופות ובחירת המערכת החדשה, ועד להטמעתה בשטח ועלייתה המוצלחת מאוד  לאוויר. התוצאה היא מערכת ניהול טעינת הרכבים החשמליים המתקדמת ביותר בישראל, המבטיחה כי EV-Edge תמשיך להוביל את השוק הצומח הזה גם בשנים הבאות.

 

עוד כתבות עבורך

כשמתודולוגיית GAIN שלנו הופכת לסטנדרט אימות AI ארגוני

לשמחתי, אצלנו בשטראוס התקופה גדושה בלווי ארגונים במסע לאימוץ בינה-מלאכותית. לצערי, זה גם התירוץ מדוע נותר לי מעט זמן לכתוב פוסטים ומאמרים. אבל, חייב לשתף אתכם בחוויה – איך Open AI ו- Perplexity גרמו לי להסמיק "בשידור חי"…

 

מעשה שהיה כך היה…

אנחנו בשטראוס אסטרטגיה רואים שליחות להפיץ את תפיסת "AI-first mindset" בקרב מנהלים, קולגות ואנשי מקצוע – במאמרים, וובינרים, הסכתים, חשיפות הנהלה, ועוד. ברמה האישית אני שגריר נלהב של המיינדסט הזה. איך זה מתבטא "קלינית"? מהם תופעות הלוואי? המממ…. למשל, כשלקוח או קולגה שואלים שאלה במייל או בוואטסאפ שאני סבור שעוזרי ה AI הווירטואליים שלי יכולים להשלים ולהעשיר את התשובה שלי, פעמים רבות אני פשוט מצרף לתשובה "האנושית" שלי גם קישור לתשובה שנתן chatgpt או perplexity לשאלה הזו. אני (כמובן) מעודד אותם להמשיך בשיחה "מאותה נקודה", בואכה התשובה הספציפית עבורם.

 

בשבוע שעבר, ההרגל הזה תפס אותי בהפתעה…

באחד הכנסים המקצועיים מצאתי את עצמי משוחח עם סמנכ"ל טכנולוגיות בחברה פיננסית גדולה. על רקע קפה דהוי משהו סיפרתי לו על מודל ההפעלה שגיבשנו בשטראוס לאימוץ ארגוני של בינה מלאכותית, GAIN שמו, ועל לקוחות שכבר מיישמים אותו. הוא לקח לגימה מהקפה (וביס מהבורקס) ושאל אותי אם יש עוד best-practices ואסטרטגיות אימוץ AI הוליסטיות מוכרות שנפוצות בישראל. סאקר של המיינדסט הזה של לשלב כוחות עם AI, סיננתי לו "בוא נשאל את chatgpt בדיוק את זה".

בעודי שואל את ChatGPT, הולכת ונולדת בי החוצה תחושת חרטה וכפכוף עצמי. לחוץ שעוד רגע ג'פטו ילרלר name dropping של אסטרטגיות ופרקטיקות ממותגות מבית היוצר של ענקיות ייעוץ גלובליות…

 

אבל הי, לא באנו ליהנות…

טו-לייט…ואז ג'פטו ענה. והתשובה הפתיעה וחייכה אותי, מפיצה חום נעים בבית החזה…ג'פטו מספר כבר בהתחלה על GAIN , מבית שטראוס אסטרטגיה, ומפרט את מרכיבי האסטרטגיה שלה. עשירית שניה אחרי, פרפלקסיטי עונה תשובה דומה ומציג את GAIN כאסטרטגיה ראשונה לאימוץ AI ארגוני.אימאל'ה ואבאל'ה!

מילא לשתף את כל העולם כמה המתודולוגיה שלנו לאימוץ AI ארגוני יכולה ליצור קסמים בארגון. אבל זה וואו לגמרי לגלות ששני יישומי ה Gen-AI ב top 3 מספרים על GAIN שלנו כשיטה מרכזית לאימוץ AI ארגוני…ואם כבר "מחשבה יוצרת מציאות": שבוע מאוחר יותר פגשנו 2 מכרזים לגיבוש מודל הפעלה לאימוץ AI ארגוני, והדרישות לספקים מנוסחות בהלימה כמעט מוחלטת למודל האימוץ שלנו…כנראה שאתם עושים משהו טוב, אמר לי חבר טוב.

כנראה, עצמי עונה לי.

בתמונות – מי אנחנו שנתווכח עם התשובות שנתנו עוזרי ה AI שלנו…

 

 

וובינר מנהיגות טכנולוגית: כיצד להפוך את מערכות המידע למנוע צמיחה עסקי

וובינר מקצועי למובילים טכנולוגיים: מנהיגות טכנולוגית כמנוע צמיחה 🚀

מעל 180 משתתפים הצטרפו לוובינר שלנו "מנהיגות טכנולוגית: כיצד להפוך את מערכות המידע למנוע צמיחה עסקי", שבו עסקנו באתגרים המרכזיים של מובילי IT בארגונים.

על מה דיברנו?
✅ איך מגבשים אסטרטגיית IT שתהיה גם יציבה וגם גמישה
✅ כיצד למנף בינה מלאכותית מתקדמת – גם ברמת האפליקציות וגם בתשתיות
✅ איך מובילים שינוי טכנולוגי משמעותי מבלי לפגוע ביציבות התפעולית
✅ התמודדות חכמה עם מערכות לגאסי והתקדמות למודרניזציה

🎙️ תודה ענקית לדוברות ולדוברים שלנו, שהביאו תובנות מעשיות מהשטח ויצרו שיח מעורר השראה! 📌
מוזמנים לצפות בהקלטה ולהעמיק בתובנות החשובות ששיתפנו. צפייה מהנה! 🔗 ⬇️

 

מ-POC להצלחה: המדריך המעשי להטמעת AI Code Companion בארגונים

בעידן שבו חדשנות טכנולוגית מהווה יתרון תחרותי משמעותי, הטמעת AI Code Companions בארגוני Enterprise אינה אופציה – היא הכרח אסטרטגי. מחקרים מראים כי כלים אלו מסוגלים להעלות את הפרודוקטיביות של צוותי הפיתוח ב-15% עד 40%, נתון משמעותי שמתרגם ישירות לערך עסקי. אולם, ההבדל בין רכישת כלי לבין הטמעה מוצלחת שלו הוא עצום.

אבל רגע לפני שנמשיך, כדאי לעשות "יישור קו" לגבי המושג עצמו: למה מתכוונים כשאומרים AI Code Companions  ומדוע הם כך כך חשובים?

AI Code Companions הם כלים מבוססי בינה מלאכותית שנועדו לעזור למפתחים בתהליך כתיבת הקוד, תיקונו, שיפורו ותחזוקתו. מדובר ב"עוזרים" חכמים שמתפקדים כחלק מסביבת העבודה של המתכנתים, ומציעים תמיכה טכנית ולוגיסטית בזמן אמת.

אל מול התיאור הנ"ל, מדוע אם כן, ארגונים רבים כל כך עדיין לא מצליחים ביישומם? התשובה לשאלה הזו היא למעשה תיאור האתגר האמיתי שאיתו גופי IT רבים מתמודדים איתו כיום:

ארגוני Enterprise בישראל ניצבים כיום בפני אתגר מורכב: מצד אחד, הצורך להאיץ תהליכי פיתוח ולשפר איכות קוד הוא קריטי להישרדות בשוק תחרותי. מצד שני, הטמעת טכנולוגיות AI בתהליכי הפיתוח מעלה שאלות מורכבות של אבטחת מידע, ציות רגולטורי, והתנגדות מצד המפתחים. מחקרים מראים כי 68% מהארגונים שרכשו כלי AI לפיתוח נתקלו בקשיים משמעותיים בהטמעה מסיבות שונות ומגוונות (למשל: פערי ידע בקרב מפתחים בצוותי הפיתוח מה שמייצר אי אחידות ביכולת היישום בשטח, חוסר במדיניות ארגונית ברורה לשימוש בכלים – מה מותר ומה אסור?, חשש נרחב ומוכר מצד צוותי פיתוח לגבי איום אפשרי מצד כלים שכאלו ועוד).

בזמן שאתגרים וחסמים לא חסרים באף ארגון, המאמר הזה נועד לספק מפת דרכים מעשית להטמעה מוצלחת של AI Code Companions, תוך התמקדות בערך העסקי והתמודדות עם האתגרים האמיתיים שארגונים נתקלים בהם.

הסעיפים הבאים הינם בגדר המלצה בלבד וכמובן שכל ארגון יכול לאמץ את הנקודות והמאפיינים שמתאימים למבנה ולתפיסה הארגונית הספציפית. 

 

שלב 1: הכנה והערכת מידת המוכנות הארגונית

עוד בטרם בחירת כלי כזה או אחר, חיוני לבצע הערכת מוכנות של הארגון וצוותי הפיתוח. הערכה זו כוללת: 

  • סקירת תהליכי פיתוח קיימים: זיהוי נקודות כאב והפוטנציאל לשיפור
  • הערכת תשתיות טכנולוגיות: בחינת תאימות לשילוב כלי AI
  • סקר מוכנות צוותים: הערכת רמת הידע והנכונות לאימוץ טכנולוגיות חדשות
  • ניתוח דרישות רגולטוריות: הבנת מגבלות, דרישות אבטחת-מידע ורגולציה

שלב 2: בחירת פתרון ותכנון הטמעה

ביסוס הבחירה בפתרון המתאים על קריטריונים מדידים שגם מתאימים לארגון:

  • יכולות טכניות ודיוק – האם נדרש לימוד של כל ה- codebase הקיים?
  • תמיכה בשפות פיתוח ובפלטפורמות רלוונטיות
  • מודל תמחור ו-ROI צפוי
  • ריצה ב- on-prem או בענן

שלב 3: יישום והטמעה בפועל (זה ה-MONEY TIMEׂ):

  1. הקמת צוות מוביל – מינוי champion מכל צוות פיתוח
  2. תכנית הכשרה מדורגת ומותאמת לצוותים על בסיס הקוד הארגוני:
  • סדנאות בסיס לכל המפתחים ומעבר על use-cases רלוונטיים
  • הכשרות מתקדמות למובילים טכניים
  •  ליווי אישי ותמיכה בשלבים הראשונים
  • מדיניות ארגונית ונהלים:
  • מסמך Governance מקיף
  • הנחיות לשימוש בטוח

שלב 4: מדידה ואופטימיזציה

כמו בכל פרויקט הטמעה נרצה להגדיר יעדים ומדדי הצלחה שיראו לארגון שאנחנו בדרך להצלחה.
מדדי הצלחה יעילים יכולים להיות, למשל:

  • קיצור זמני הפיתוח עד ליצירת ה- pull request
  • כמות שורות קוד שיוצרו בעזרת AI Code Companion (ביחס לכמות הקוד הכוללת)
  • חיסכון בשעות פיתוח בחודש ו/או הגדלת מספר משימות הפיתוח
  • עלות ממוצעת לשורת קוד
  • איכות הקוד – ירידה במספר ההערות של static code analysis

מתיאוריה לפרקטיקה: סיפור הצלחה מקומי

אחת מחברות הפינטק המובילות בישראל, בליווי שלנו, הצליחה להטמיע בהצלחה כלי AI Code Companion בצוותי הפיתוח שלה. עם צוות של כ-45 מפתחים, החברה הפכה למקרה בוחן מרתק של הטמעה מדורגת ואפקטיבית של יכולות AI, שהביאו לשינוי משמעותי בתהליכי העבודה.

 

התוצאות מדברות בעד עצמן:

  • 80,000+ שורות קוד שנוצרו בעזרת הכלי – האצה מרשימה בתפוקה.
  • קיצור זמני הפיתוח: מסך חדש ב-React, שדרש בעבר 10 ימי עבודה, מפותח כיום תוך 3 ימים בלבד.
  • 80% מהמפתחים משתמשים בכלי מדי יום – עדות ליעילות ולנוחות של הכלי.
  • 50% מהצעות הכלי אומצו בפועל על ידי המפתחים, מה שממחיש את הערך האמיתי של הטכנולוגיה.

 

הסיפור הזה מוכיח שכשמאמצים פתרונות AI בצורה חכמה, אפשר לייצר שינויים מרחיקי לכת בשגרה, לייעל תהליכים, ולתת לצוותים כלים לעבוד טוב יותר.
רוצים לדעת איך גם אתם יכולים לשלב פתרון AI Code Companion בארגון שלכם? אנחנו כאן כדי לעזור לכם לעשות את הצעד הבא.

 

5 המלצות להטמעה מוצלחת של AI Code Companions בארגון שלך

הטמעת כלי AI Code Companion יכולה להוביל למהפכה בצוותי הפיתוח שלך – אבל כדי שזה יקרה, נדרשת גישה מחושבת ותכנון נכון. הנה מה שחשוב שתיקחו איתכן/ם מהמאמר הזה:

  1. הכנה מקדימה היא המפתח
    לפני שאתם בוחרים או רוכשים כלי, השקיעו זמן בהבנת הצרכים והיעדים של הצוות שלכם. בנו תשתית טכנולוגית וארגונית שתומכת בהטמעה.
  2. הטמעה הדרגתית – לא למהר
    התחילו בצוות פיילוט קטן שיבחן את הכלי בפועל, ויישמו שיפורים תוך כדי תנועה. לאחר מכן, הרחיבו את השימוש על בסיס הלקחים שנלמדו.
  3. תהליך מתמשך, לא חד-פעמי
    הדרכה אחת פשוט לא מספיקה. בנו תכנית הטמעה מתמשכת עם הדרכות תקופתיות, דגש על יישום מעשי, ותמיכה טכנית שוטפת כדי להבטיח הצלחה ארוכת טווח.
  4. תמיכה תרבותית בארגון
    שתפו את המפתחים בתהליך קבלת ההחלטות והתאימו את הכלי לצרכים שלהם. שיתוף פעולה יוצר מחויבות אמיתית ומגדיל את הסיכוי להצלחה.
  5. מדידה ושיפור מתמידים
    הגדירו מראש KPIs ברורים, כמו שימוש יומיומי בכלי או הפחתת זמני פיתוח. עקבו אחריהם באופן שוטף ושפרו את התהליכים בהתאם.

רוצים לדעת איך ליישם את זה אצלכם בארגון?
צוות המומחים שלנו ישמח להבין את האתגרים שלכם, וייסע בגיבוש תכנית הטמעה. פנו אלינו ל: maya@s-strategy.com